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Stereoselectivity for (5-phenyltetrahydrofur-2-yl)alkan-1-ol formation (cis:trans < 1:99) from 5-methyl-
and 5-phenyl-substituted 1-phenylpent-4-en-1-ols via cobalt-catalyzed aerobic oxidation was indepen-
dent of the olefinic p-bond configuration of the substrates.
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Acceptor-substituted cobalt(II) chelates are valuable reagents
for 3O2 activation1–3 to serve as powerful but selective oxidants
for tetrahydrofuran formation from substituted pent-4-en-1-ols
(bishomoallylic alcohols).4–7 The oxidative ring closure occurs with
a notable degree of diastereoselection to afford 2,3-trans- (�99%
de), 2,4-cis- (�70% de), and 2,5-trans-configured (>99% de) tetra-
hydrofur-2-yl-methanols in �70–80% yield.8–10 If methyl groups
are substituted for terminal hydrogen atoms, or tertiary alkenols
are used instead of primary or secondary substrates, the cobalt
method surprisingly failed to provide a similar degree of product-
and diastereoselectivity.9,11 One of the most striking results in an
earlier series of experiments related to this topic originated from
an attempt to selectively oxidize an (E)-alkenol with O2 in the pres-
ence of a cobalt(II) complex. The stereochemical information orig-
inating from the olefinic p-bond was lost in the course of oxidative
cyclization although the customary 2,5-trans selectivity for tetra-
hydrofuran formation was retained.9 If this selectivity posed a gen-
eral feature of the cobalt method, it would provide strong
mechanistic evidence for stepwise tetrahydrofurylmethanol for-
mation from open chain substrates. The advent of a more reactive
cobalt catalyst (vide infra) has enabled us to address the issue of
selectivity in oxidative cyclizations of (E)- and (Z)-alkenols more
systematically. The most important results from this investigation
showed that the 2,5-trans diastereoselectivity (>99% de) was en-
tirely independent of the p-bond configuration. A consistent
�35/65 distribution of stereoisomers with respect to the newly
formed stereocenter in the alkanol side chain pointed in all in-
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ung).
stances to a symmetric intermediate, and hence to a sequential
mechanism for formation of the two new C,O bonds.

4-[3,5-Bis(trifluoromethyl)phenyl]-4-hydroxy-but-3-en-2-one-
derived cobalt(II) complex 1a was discovered in this laboratory in
the course of a reactivity survey associated with the search for
strong and selective aerobic oxidation catalysts. The compound
(yellow crystalline solid)24,25 was prepared from Co(OAc)2 � 4H2O
and 2 equiv of auxiliary 2a in EtOH, in extension to a method re-
ported for the synthesis of camphor derivative 1b from 2b (Scheme
1).12

Bishomoallylic alcohols (E)/(Z)-3/4 were inert toward oxygen
[>95% (v/v), 1 bar], if stirred for �4 h in iPrOH at 60 �C. Addition
of cobalt(II) reagent 1a (10 mol %) to a likewise prepared solution
of (E)-1-phenylhex-4-en-1-ol (E)-(3)13 [(E):(Z) > 99:1; GC, 1H
NMR] furnished 63% of trans-2,5-disubstituted tetrahydrofuran
2b
O O

2a H
H

Scheme 1. Preparation of cobalt(II) complexes 1a–b.



Table 1
Synthesis of 2,5-disubstituted tetrahydrofurans 5/6 via aerobic cobalt-catalyzed oxidation of alkenols (E)-3/4

Ph OH OPh

OH

5/6

RE

O2 / CoL2
n

solvent / 60 °C
RE

H H

(E)-3/4
cis/trans < 1/99

OPh

7/8

RE

H H

cis/trans < 1/99

+

1.5–4 h
5

β

Entry 3/4 RE Solvent CoLn/mol % Convn. 5/6 /% (dr)a,b 7/8/%a

1 (E)-3 CH3 iPrOH 1a/10 97 5: 63 (33:67) 7: 17c

2 (E)-3 CH3 iPrOH 1b/20 66 5: 34 (56:44) 7: — d

3 (E)-3 CH3 C6H6/CHD 1a/10 Quant. 5: 8 (39:61) 7: 86 e

4 (E)-4 C6H5 iPrOH 1a/10 97 6: 53 (13:87) 8: — d,f

5 (E)-4 C6H5 iPrOH 1b/20 82 6: 22 (57:43) 8: —d

6 (E)-4 C6H5 C6H6/CHD 1a/10 Quant. 6: 37 (38:62) 8: 15g

a cis-5–8 were not detected (GC, NMR).
b Diastereomeric ratio with respect to configuration at Cb (GC).
c Additional products: 2-acetyl-5-phenyltetrahydrofuran (6%), (E)-1-phenylhex-4-en-1-one (7%).15

d Not detected.
e Additional product: 2-acetyl-5-phenyltetrahydrofuran (1%).
f Additional products: 5-phenyltetrahydrofuran-2-ol (3%),16 5-phenyltetrahydrofuran-2-one (3%),17 1,5-diphenyl pentane-1,5-diol (7%),19,20 1,5-diphenyl-5-hydroxypen-

tane-1-one (4%),19 4-phenyl-4-oxobutanal (2%),18 benzaldehyde (4%).
g Additional products: 5-phenyltetrahydrofuran-2-one (2%),17 benzaldehyde (2%).
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59 (cis:trans < 1:99; Table 1, entry 1).26 Reaction parameters (tem-
perature, cobalt concentration, and molar catalyst/substrate ratio)
were independently varied (not shown), but finally corresponded
to those reported previously for related reactions.9,11 Oxidation of
(E)-1,5-diphenylpent-4-en-1-ol (E)-(4)13 [(E):(Z) > 99:1; GC, 1H
NMR] under such conditions afforded tetrahydrofuran 614 (cis:-
trans < 1:99) as the major product (53%, Table 1, entry 4). A similar
efficiency for tetrahydrofuran formation was not attainable, if pre-
viously established reagent 1b served as the catalyst (Table 1, en-
tries 2 and 5). Mass balances were in all instances supplemented in
combined GC–MS and NMR investigations using purified samples
from larger batches, and data from independently prepared
authentic samples15–20 [e.g., 96% mass balance for the oxidation
of (E)-3 and 79% mass balance for transformation of (E)-4; Table
1, entries 1 and 4).

Diastereoselectivity for construction of the stereocenter at Cb in
the alkanol side chain of 5 and 6 ranged from 57/43 to 13/87. It was
dependent on the nature of the terminal substituent (i.e., CH3 or
C6H5), solvent, and applied cobalt reagent. An assignment of ster-
eoisomers was not attainable on the basis of available spectro-
scopic data. This issue is subject to ongoing investigations.

A change in solvent from iPrOH to a 50/50-mixture of C6H6/
cyclohexa-1,4-diene (CHD) significantly favored formation of
trans-2-phenyl-5-ethyltetrahydrofuran trans-7 from (E)-3 (Table
1, entries 1 and 3). No such marked variation in product selectivity
was observed in the oxidation of (E)-4 (Table 1, entries 4 and 6).

Aerobic oxidations of alkenols (Z)-313 and (Z)-413 [both
(E):(Z) < 1:99; GC, 1H NMR] in iPrOH solution of cobalt(II) reagent
1a (60 �C) afforded 2,5-trans-configured (5-phenyltetrahydrofur-
2-yl)alkan-1-ols 5 and 6 as major components, and derivatives 7/
8 as side products (Table 2, entries 1 and 3).9,14,16 Configuration
at newly formed stereocenters in alkanol side chains of heterocy-
cles 5 and 6 again showed a �35/65 distribution of stereoisomers,
with major components being equivalent to those from aerobic
oxidations of substrates (E)-3/4 (Table 1). Extended product analy-
sis clarified that autoxidation (formation of 2-acetyl-5-phen-
yltetrahydrofuran; Table 2, entries 1 and 2), olefin hydration
(formation of 1,5-diphenyl pentane-1,5-diol; Table 2, entry
3),19,20 C,C-bond cleavage (formation of 5-phenyltetrahydrofuran-
2-one; Table 2, entry 3),17 and reduction (formation of 1,5-diphe-
nyl pentan-1-ol, Table 2, entries 3–5)21 accounted for the fact that
combined yields of tetrahydrofurans 5/7 and 6/8 remained below
�80%. Product diversity in oxidations of (Z)-4 (RZ = C6H5) was lar-
ger than in transformations of (Z)-3 (RZ = CH3). The use of CHD/
C6H6 as the solvent instead of iPrOH furnished notable yields of tet-
rahydrofurans 7/8 from alkenols (Z)-3/4 (Table 2, entries 2 and 5).

The current investigation on cobalt(II)-catalyzed aerobic oxida-
tions of (E)- and (Z)-bishomoallylic alcohols provided four distinc-
tive results:

(i) Catalytic activity of bis{4-[3,5-bis(trifluoromethyl)phenyl]-
2-(oxo-jO)-but-3-en-4-olatojO}cobalt(II) (1a) for synthesis
of (2-phenyltetrahydrofur-2-yl)alkan-1-ols from d,e-unsatu-
rated alcohols notably exceeded that of established reagent
1b.

(ii) Solvent variation from iPrOH to CHD/C6H6 was associated
with a change in product selectivity from oxidative cycli-
zation (formation of substituted tetrahydrofur-2-ylmetha-
nols 5/6) toward alkenol cyclization (synthesis of
substituted 2-alkyltetrahydrofurans 7/8). Given mild and
pH neutral conditions and the high degree of diastereose-
lection, the reductive tetrahydrofuran synthesis is
expected to offer important prospect for future heterocy-
cle synthesis.5,22,23

(iii) The customary 2,5-trans selectivity (cis/trans < 1/99, GC) in
aerobic cobalt-catalyzed oxidations of substrates 3/4 was
retained. It was independent from olefinic p-bond configura-
tion, similar to isomer distribution with respect to the newly
formed stereocenter in the alkanol side chain.

(iv) Alkenols having a phenyl substituent attached at terminal
position of the olefinic p-bond are prone to undergo C,C-
cleavage. The effect was more pronounced for (E)-b-alkyl
styrene derivative (E)-4 than for its (Z)-congener.

The most important implication from the presented data relates
to evidence for sequential C,O bond formation in this type of oxida-
tive alkenol ring closure. In combination with the selectivity effect
exerted by co-solvent CHD, this finding suggests that the reaction
is likely to be terminated via carbon radical trapping. This would
imply that groups other than the H-atom should be transferable
in the final step of the synthesis, which is being pursued at the mo-
ment in this laboratory.



Table 2
Formation of 2,5-disubstituted tetrahydrofurans 5/6 via aerobic cobalt-catalyzed oxidation of (Z)-configurated bishomoallylic alcohols (Z)-3/4

Ph OH OPh

OH

5/6

O2 / CoL2
n

solvent / 60 °C
RZ

H H

(Z)-3/4 cis/trans < 1/99

RZ

OPh

7/8

RZ

H H

cis/trans < 1/99

+

3–4 h

β

Entry 3/4 RE Solvent CoLn/mol % Convn. 5/6/% (dr)a,b 7/8/%a

1 (Z)-3 CH3 iPrOH 1a/10 Quant. 5: 61 (39:61) 7: 8c

2 (Z)-3 CH3 C6H6/CHD 1a/10 96 5: 9 (38:62) 7: 71d

3 (Z)-4 C6H5 iPrOH 1a/10 98 6: 17 (35:65) 8: 1e

4 (Z)-4 C6H5 iPrOH 1b/20 44 6: 9 (67:33) 8: –f,g

5 (Z)-4 C6H5 C6H6/CHD 1a/10 89 6: 16 (31:69) 8: 47h

a cis-5–8 were not detected (GC, NMR).
b Diastereomeric ratio with respect to configuration at Cb (GC).
c Additional product: 2-acetyl-5-phenyltetrahydrofuran (8%).
d Additional product: 2-acetyl-5-phenyltetrahydrofuran (5%).
e Additional products: 5-phenyltetrahydrofuran-2-one (3%),17 1,5-diphenyl pentan-1-ol (23%),21 1,5-diphenyl pentane-1,5-diol (33%),19,20 (Z)-1,5-diphenyl pent-4-en-1-

one (3%),14 1,5-diphenyl pentan-5-ol-1-one (6%).18

f Not detected.
g Additional product: 1,5-diphenyl pentan-1-ol (19%).21

h Additional products: 1,5-diphenyl pentan-1-ol (11%),21 (Z)-1,5-diphenyl pent-4-en-1-one (3%) 14.
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